The angle between the pair of tangents from the point $(1, 1/2)$ to the circle $x^2 + y^2 + 4x + 2y -4=0$ is-

  • A

    ${\cos ^{ - 1}}\frac{4}{5}$

  • B

    ${\sin ^{ - 1}}\frac{4}{5}$

  • C

    ${\sin ^{ - 1}}\frac{3}{5}$

  • D

    None of these

Similar Questions

The tangent and the normal lines at the point $(\sqrt 3,1)$ to the circle $x^2 + y^2 = 4$ and the $x -$ axis form a triangle. The area of this triangle (in square units) is

  • [JEE MAIN 2019]

The co-ordinates of the point from where the tangents are drawn to the circles ${x^2} + {y^2} = 1$, ${x^2} + {y^2} + 8x + 15 = 0$ and ${x^2} + {y^2} + 10y + 24 = 0$ are of same length, are

Let the tangent to the circle $x^{2}+y^{2}=25$ at the point $R (3,4)$ meet $x$ -axis and $y$ -axis at point $P$ and $Q$, respectively. If $r$ is the radius of the circle passing through the origin $O$ and having centre at the incentre of the triangle $OPQ ,$ then $r ^{2}$ is equal to

  • [JEE MAIN 2021]

Consider circle $S$ : $x^2 + y^2 = 1$ and $P(0, -1)$ on it. $A$ ray of light gets reflected from tangent to $S$ at $P$ from the point with abscissa $-3$ and becomes tangent to the circle $S.$  Equation of reflected ray is

A tangent to the circle ${x^2} + {y^2} = 5$at the point $(1,-2)$ the circle ${x^2} + {y^2} - 8x + 6y + 20 = 0$

  • [IIT 1975]